首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29827篇
  免费   3952篇
  国内免费   6877篇
化学   27223篇
晶体学   692篇
力学   1290篇
综合类   281篇
数学   2211篇
物理学   8959篇
  2024年   36篇
  2023年   315篇
  2022年   590篇
  2021年   946篇
  2020年   1294篇
  2019年   1043篇
  2018年   926篇
  2017年   1024篇
  2016年   1225篇
  2015年   1088篇
  2014年   1416篇
  2013年   2866篇
  2012年   2478篇
  2011年   1795篇
  2010年   1426篇
  2009年   1837篇
  2008年   1936篇
  2007年   1993篇
  2006年   1945篇
  2005年   1795篇
  2004年   1715篇
  2003年   1441篇
  2002年   1177篇
  2001年   919篇
  2000年   929篇
  1999年   766篇
  1998年   656篇
  1997年   621篇
  1996年   597篇
  1995年   607篇
  1994年   568篇
  1993年   446篇
  1992年   459篇
  1991年   347篇
  1990年   272篇
  1989年   216篇
  1988年   171篇
  1987年   137篇
  1986年   132篇
  1985年   102篇
  1984年   89篇
  1983年   35篇
  1982年   58篇
  1981年   44篇
  1980年   32篇
  1979年   27篇
  1978年   19篇
  1977年   17篇
  1976年   16篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
In the present investigation, the novel copper Schiff base complex was synthesized and its catalytic activity was evaluated for the ring-opening polymerization (ROP) of lactide and block polymerization of poly(lactide) with poly(ethylene glycol)methyl ether.  相似文献   
92.
Highly branched perfluorinated aromatic polyether copolymers were prepared from the polycondensation of the AB2 monomer, 3,5‐bis[(pentafluorobenzyl)oxy]benzyl alcohol with a variety of fluoroaryl and alkyl bromide AB comonomers. The structures and comonomer distribution of the resulting polymers were characterized in detail. 1H NMR data from kinetic trials illustrated that perfluoroaryl AB comonomer distribution correlated to AB comonomer sterics. 19F NMR data revealed that fluorinated AB monomers and 3‐bromo‐1‐propanol AB monomers were distributed within the AB2 polymer backbone, while longer alkyl bromide AB monomers, 6‐bromo‐1‐hexanol, were mostly distributed along hyperbranched polymer chain ends. In general, as AB comonomer incorporation increased for nonsterically hindered copolymers, thermal decomposition onset increased and glass transition temperatures decreased. The combined data demonstrated the effect of comonomer distribution and sterics on physical properties of AB2‐based polymer systems. The resulting materials were used to cast thin polymer films for measurement of contact angle, which were shown to be directly related to comonomer content. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1880–1894  相似文献   
93.
94.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
95.
By using the strategy of pre-assembly chlorosulfonation applied to a linker precursor, the first sulfonated zirconium metal–organic framework ( JUK-14 ) with two-dimensional (2D) structure, was synthesized. Single-crystal X-ray diffraction reveals that the material is built of Zr6O4(OH)4(COO)8 oxoclusters, doubly 4-connected by angular dicarboxylates, and stacked in layers spaced 1.5 nm apart by the presence of sulfonic groups. JUK-14 exhibits excellent hydrothermal stability, permanent porosity confirmed by gas adsorption studies, and shows high (>10−4 S/cm) and low (<10−8 S/cm) proton conductivity under humidified and anhydrous conditions, respectively. Post-synthesis inclusion of imidazole improves the overall conductivity increasing it to 1.7×10−3 S/cm at 60 °C and 90 % relative humidity, and by 3 orders of magnitude at 160 °C. The combination of 2D porous nature with robustness of zirconium MOFs offers new opportunities for exploration of the material towards energy and environmental applications.  相似文献   
96.
Two new rod-packing metal–organic frameworks (RPMOF) are constructed by regulating the in situ formation of the capping agent. In CPM-s7, carboxylate linkers extend 1D manganese-oxide chains in four additional directions, forming 3D RPMOF. The substitution of Mn2+ with a stronger Lewis acidic Co2+, leads to an acceleration of the hydrolysis-prone sulfonate linker, resulting in presence of sulfate ions to reduce two out of the four carboxylate-extending directions, and thus forming a new 2D rod-packing CPM-s8. Density functional theory calculations and magnetization measurements reveal ferrimagnetic ordering of CPM-s8, signifying the potential of exploring 2D RPMOF for effective low-dimensional magnetic materials.  相似文献   
97.
Lithium (Li) metal has attracted significant attention in areas that range from basic research to various commercial applications due to its high theoretical specific capacity (3860 mA h g−1) and low electrochemical potential (−3.04 vs. standard hydrogen electrode). However, dendrites often form on the surfaces of Li metal anodes during cycling and thus lead to battery failure and, in some cases, raise safety concerns. To overcome this problem, a variety of approaches that vary the electrolyte, membrane, and/or anode have been proposed. Among these efforts, the use of three-dimensional frameworks as Li hosts, which can homogenize and minimize the current density at the anode surface, is an effective approach to suppress the formation of Li dendrites. Herein, we describe the development of using carbon-based materials as Li hosts. While these materials can be fabricated into a variety of porous structures, they have a number of intrinsic advantages including low costs, high specific surface areas, high electrical conductivities, and wide electrochemical stabilities. After briefly summarizing the formation mechanisms of Li dendrites, various methods for controlling structural and surface chemistry will be described for different types of carbon-based materials from the viewpoint of improving their performance as Li hosts. Finally, we provide perspective on the future development of Li host materials needed to meet the requirements for their use in flexible and wearable devices and other contemporary energy storage techniques.  相似文献   
98.
Zeolitic octahedral metal oxides are inorganic crystalline microporous materials with adsorption and redox properties. New ϵ-Keggin nickel molybdate–based zeolitic octahedral metal oxides have been synthesized. 31P NMR spectroscopy shows that reduction of MoVI-based molybdates forms an ϵ-Keggin polyoxometalate that immediately transfers to the solid phase. Investigation of the formation process indicates that a low Ni concentration, insoluble reducing agent, and long synthesis time are the critical factors for obtaining the zeolite octahedral metal oxides rather than the ϵ-Keggin polyoxometalate molecule. The synthesized zeolitic nickel molybdate with Na+ is used as the adsorbent, which effectively separates C2 hydrocarbon mixtures.  相似文献   
99.
Surface organic ligands are critical in dictating the structures and properties of atomically precise metal nanoclusters. In contrast to the conventionally used thiolate, phosphine and alkynyl ligands, nitrogen donor ligands have not been used in the protection for well-defined metal nanoclusters until recently. This review focuses on recent developments in atomically precise metal nanoclusters stabilized by different types of nitrogen donor ligands, in which the synthesis, total structure determination and various properties are covered. We hope that this review will provide insights into the rational design of N donor-protected metal nanoclusters in terms of structural and functional modulation.  相似文献   
100.
Lithium garnets are promising solid-state electrolytes for next-generation lithium-ion batteries. These materials have high ionic conductivity, a wide electrochemical window and stability with Li metal. However, lithium garnets have a maximum limit of seven lithium atoms per formula unit (e.g., La3Zr2Li7O12), before the system transitions from a cubic to a tetragonal phase with poor ionic mobility. This arises from full occupation of the Li sites. Hence, the most conductive lithium garnets have Li between 6–6.55 Li per formula unit, which maintains the cubic symmetry and the disordered Li sub-lattice. The tetragonal phase, however, forms the highly conducting cubic phase at higher temperatures, thought to arise from increased cell volume and entropic stabilisation permitting Li disorder. However, little work has been undertaken in understanding the controlling factors of this phase transition, which could enable enhanced dopant strategies to maintain room temperature cubic garnet at higher Li contents. Here, a series of nine tetragonal garnets were synthesised and analysed by variable temperature XRD to understand the dependence of site substitution on the phase transition temperature. Interestingly the octahedral site cation radius was identified as the key parameter for the transition temperature with larger or smaller dopants altering the transition temperature noticeably. A site substitution was, however, found to make little difference irrespective of significant changes to cell volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号